Novel Phenomenon of Oxygen-to-oxygen Silyl Migration in Directed Aldol Reaction

Zhi Quan ZHAO ${ }^{1}$, Li Zeng PENG $^{1 *}$, Yu Lin $\mathrm{LI}^{2 *}$
${ }^{1}$ Lunan Pharmaceutical Co., Ltd., Linyi, Shandong 276003
${ }^{2}$ National Laboratory of Applied Organic Chemistry, Institute of Organic Chemistry, Lanzhou University, Lanzhou 730000

Abstract

The phenomenon of migration of the silyl groups from α-oxygen to β-oxygen in sodium aldol reaction was observed for the first time in this paper.

Keywords: Silyl migration, α-silyloxy ketone, aldol reaction.

The migration of trialkylsilyl protecting groups (TBS, TBDPS, TIPS, TMS etc.) from oxygen to oxygen is a well-known phenomenon in organic chemistry. Usually, these rearrangements occur in a 1,4 or 1,5 fashion, and $1, n(n=6-11$ etc.) type silyl migration has also been observed ${ }^{1}$.

We are interested in this process during our studies on the directed aldol reactions of α-silyloxy ketone 2a with heliotropin 1a (Scheme 1). The aldehyde 1a was used in the aldol reaction with the sodium enolate of α-siloxy ketone 2a. When the aldol reaction mixture was maintained at $-78^{\circ} \mathrm{C}$ for 0.5 h and allowed to warm up to $0^{\circ} \mathrm{C}$, then the reaction was quenched with dilute hydrochloric acid, the anti isomer 4aa with its syn isomer 3aa and the other anti isomer 5aa ${ }^{2}$ in the ratio of 88:10:2 were obtained in the total yield of 85%. The ratio was determined by HPLC and ${ }^{1} \mathrm{H}$ NMR (entry 7). When the aldol reaction mixture was maintained below $-78^{\circ} \mathrm{C}$ for 2 h , to ensure complete reaction, and quenched with dilute hydrochloric acid at this temperature under these conditions (kinetic), the syn isomer 3aa along with its anti isomers 4aa and 5aa was obtained in 85\% yield in the ratio of 85:12:3 (entry 1). HPLC, TLC, and NMR indicate that each adduct to be a single racemic isomer. The MS indicates that 3aa and 4aa are β-silyloxy products, and 5aa is α-silyloxy product. Aldol 4aa was desilylated by treatment with TBAF in THF to give the corresponding diol, which showed identical spectral data with that obtained from the aldol 5aa.

The aldol reactions ${ }^{3}$ of sodium enolates of other α-silyloxy ketones with aldehydes (alkyl, allyl, aryl) were also investigated. The results were consistent with the above observations (see Scheme 2, Table 1).

[^0]
Scheme 1

Scheme 2 Aldol condensation of α-siloxy ketone 2 with aldehyde 1

Table 1 Aldol condensation of α-siloxy ketone 2 with aldehyde 1

Entry	$1+2$	Conditions ${ }^{\text {a }}$	$3: 4: 5: 6^{b}$	Isolated Yield \%
1	1a+2a	A	85: 12: 3: 0	85
2	1b+2a	A	45: 10: 10: 35	85
3	1c+2a	A	95: 5: 0: $0^{\text {c }}$	80
4	1d+2a	A	86: 12: 2: 0	75
5	1e+2a	A	85: 15: 0: 0	80
6	$\mathbf{1 f}+\mathbf{2 a}$	A	100: 0: 0: $0^{\text {c }}$	75
7	1a+2a	B	10: 88: 2: 0	85
8	1c+2a	B	15: 85: 0: $0^{\text {c }}$	70
9	$\mathbf{1 e}+2 \mathrm{~b}$	B	85: 13: $2: 0$	90
10	1a+2c	A	75: 20: 5: 0	90

${ }^{\mathrm{a}}$ Conditions A: 3.0 equiv of $\mathrm{NaN}(\mathrm{TMS})_{2}, 2.2$ equiv of $2,1.0$ equiv of $1,-78^{\circ} \mathrm{C}, 2 \mathrm{~h} ; \mathrm{B}: 3.0$ equiv of $\mathrm{NaN}(\mathrm{TMS})_{2}, 2.2$ equiv of $2,1.0$ equiv of $1,-78-0^{\circ} \mathrm{C} ; \mathrm{C}: 1.1$ equiv of $\mathrm{NaN}(\mathrm{TMS})_{2}$, 1.0 equiv of $2,1.0$ equiv of $1,-78-0^{\circ} \mathrm{C}$; ${ }^{\mathrm{b}} \mathrm{The}$ ratio of $\mathbf{3}, \mathbf{4}, \mathbf{5}$ and $\mathbf{6}$ in the product mixture was determined by $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of the crude products before chromatography; ${ }^{\text {c }}$ See ref. 2 and ref. 4.

In summary, a novel phenomenon that the silyl groups (TBS and TBDPS) migrated from α-oxygen to β-oxygen (1, 4 fashion) in directed aldol reaction was described ${ }^{4}$.

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 20072012).

References and Notes

1. (a) W. C. Still, T. L. Macdonald, J. Org. Chem., 1976, 41, 3620; (b) T. Yamazaki, K. Mizutani, M. Takeda, T. Kitazume, J. Chem. Soc., Chem. Commun., 1992, 55; (c) T. Yamazaki, T. Oniki, T. Kitazume, Tetrahedron, 1996, 52, 11753; for the review of 1, n oxygen to oxygen silyl migrations, see: (d) C. Rücker, Chem. Rev., 1995, 95, 1009.
2. Spectral data: 3aa, IR (film): $1715 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $-0.10(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Me}), 0.06(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.90\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.00(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{Me}), 1.11(\mathrm{~d}, 3 \mathrm{H}, J=$ $6.6 \mathrm{~Hz}, \mathrm{Me}), 3.09\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{Me})_{2}\right), 3.48(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{OH}), 4.38(\mathrm{dd}, 1 \mathrm{H}, J=7.2,3.6$ $\mathrm{Hz}, \mathrm{CHOH}), 4.91$ (d, $1 \mathrm{H}, J=3.6 \mathrm{~Hz}, \mathrm{CHOTBS}), 5.91\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.72(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{CH})$, 6.80 (s, $1 \mathrm{H}, \mathrm{CH}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): -5.4, $-4.9,16.6,17.9,19.1,25.6,37.5$, 75.3, 78.6, 100.8, 106.7, 107.6, 119.3, 128.5, 133.8, 147.2, 213.9; EIMS m/z: $265\left(\mathrm{M}^{+}-101\right.$, 65); Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 62.26$; H, 8.25. Found: C, 62.34; H, 8.24. 4aa, IR (film): $1720 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $-0.09(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.05(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.89(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.90(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{Me}), 1.01(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{Me}), 2.50(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C} H(\mathrm{Me})_{2}\right), 3.51(\mathrm{~d}, 1 \mathrm{H}, J=5.8 \mathrm{~Hz}, \mathrm{OH}), 4.45(\mathrm{dd}, 1 \mathrm{H}, J=5.8,4.0 \mathrm{~Hz}, \mathrm{CHOH}), 4.85(\mathrm{~d}, 1 \mathrm{H}$, $J=4.0 \mathrm{~Hz}$, CHOTBS), $5.98\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.80(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{CH}), 6.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $-5.1,-4.8,16.5,18.0,18.8,25.6,38.3,77.2,79.8,101.0,106.9$, 107.8, 119.5, 147.0, 147.6, 214.1; EIMS m/z: $265\left(\mathrm{M}^{+}-101,42\right)$; Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Si}$: C, $62.26 ; \mathrm{H}, 8.25$. Found: C, 62.30 ; H, 8.26. 5aa, IR (film): $1726 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right):-0.24(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}),-0.02(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.87\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.99(\mathrm{~d}, 3 \mathrm{H}, J$ $=6.6 \mathrm{~Hz}, \mathrm{Me}), 1.02(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{Me}), 2.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{Me})_{2}\right), 4.18(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}$, $\mathrm{CH}), 4.73(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}), 5.96\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.79(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{CH}), 6.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $-5.4,-5.0,18.0,18.6,25.7,36.3,75.8,81.2,101.0$ $\left(\mathrm{CH}_{2}\right), 107.6,107.9,120.8,134.1,147.5,147.6,215.9$; EIMS $m / z: 349\left(\mathrm{M}^{+}-17,0.2\right), 265$ $\left(\mathrm{M}^{+}-101,0.02\right), 151\left(\mathrm{M}^{+}-215,40\right)$; Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 62.26$; H, 8.25. Found: C, 62.30; H, 8.28. 3fa, IR (film): $1700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): -0.01 ($\mathrm{s}, 3 \mathrm{H}$, Me), $0.03(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.08(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{Me}), 1.11(\mathrm{~d}, 3 \mathrm{H}, J=$ $6.6 \mathrm{~Hz}, \mathrm{Me}), 1.57$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), $1.59(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.69(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.05(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me})$, 1.98-2.20 (m, 8 H), $3.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} H(\mathrm{Me})_{2}\right), 3.25(\mathrm{~d}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{OH}), 4.18(\mathrm{dd}, 1 \mathrm{H}, J=$ $7.3,3.4 \mathrm{~Hz}, \mathrm{CHOH}), 4.32$ (d, $1 \mathrm{H}, J=3.4 \mathrm{~Hz}, \mathrm{CHOTBS}$), 4.59 (d, $2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OAc}$), $5.10(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}=), 5.34(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}=), 5.42(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}=)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $-5.4,-4.8,12.8,15.8,16.3,17.1,17.6,18.0,18.4,18.8$, $20.9,25.7,26.1,37.3,39.0,39.4,61.3,76.3,118.2,123.9,127.7,133.8,134.9,142.0,170.9$, 215.2; EIMS $m / z: 393\left(\mathrm{M}^{+}-101,15\right)$; Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{50} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 68.04 ; \mathrm{H}, 10.19$. Found: C, 68.00; H, 10.20.
3. For a review of directed aldol reaction, see: T. Mukaiyama, Org. React., 1982, $28,203$.
4. (a) W. D. Z. Li, Y. Li, Y. L. Li, Tetrahedron Lett., 1999, 40, 965; (b) L. Z. Peng, Y. L. Li, W. D. Z. Li, Tetrahedron Lett., 2003, 44, 3991; (c) L. Z. Peng, T. Zhang, T. S. Mei, F. Z. Zhang, Y. L. Li, Acta Chim. Sin., (in Chinese) 2003, 61, 1052.

Received 16 January, 2004

[^0]: * E-mail: penglizeng@163.net; lily@lzu.edu.cn

